Shrinkage function and its applications in matrix approximation
نویسندگان
چکیده
منابع مشابه
Improved Wavelet Neural Networks and Its Applications in Function Approximation
The advent of the computer is a blessing to the emergence of artificial neural networks (ANNs) – a research area which has significant links to the effort of scientists to emulate the complex functions of the human brain. The ANNs, which conceptually model the human brain metaphor with vast number of interconnecting artificial neurons, experience an upsurge in popularity due to their effectiven...
متن کاملShrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata
Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...
متن کاملNonlinear approximation and its applications
I first met Wolfgang Dahmen in 1974 in Oberwolfach. He looked like a high school student to me but he impressed everyone with his talk on whether polynomial operators could produce both polynomial and spectral orders of approximation. We became the best of friends and frequent collaborators. While Wolfgang’s mathematical contributions spread across many disciplines, a major thread in his work h...
متن کاملApproximation of Matrix Rank Function and Its Application to Matrix Rank Minimization
Matrix rank minimization problem is widely applicable in many fields such as control, signal processing and system identification. However, the problem is in general NP-hard, and it is computationally hard to solve directly in practice. In this paper, we provide a new kind of approximation functions for the rank of matrix, and the corresponding approximation problems can be used to approximate ...
متن کاملNonnegative Matrix Approximation: Algorithms and Applications
Low dimensional data representations are crucial to numerous applications in machine learning, statistics, and signal processing. Nonnegative matrix approximation (NNMA) is a method for dimensionality reduction that respects the nonnegativity of the input data while constructing a low-dimensional approximation. NNMA has been used in a multitude of applications, though without commensurate theor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2017
ISSN: 1081-3810
DOI: 10.13001/1081-3810.3218